Oscillator model reduction preserving the phase response: application to the circadian clock.
نویسندگان
چکیده
Mathematical model reduction is a long-standing technique used both to gain insight into model subprocesses and to reduce the computational costs of simulation and analysis. A reduced model must retain essential features of the full model, which, traditionally, have been the trajectories of certain state variables. For biological clocks, timing, or phase, characteristics must be preserved. A key performance criterion for a clock is the ability to adjust its phase correctly in response to external signals. We present a novel model reduction technique that removes components from a single-oscillator clock model and discover that four feedback loops are redundant with respect to its phase response behavior. Using a coupled multioscillator model of a circadian clock, we demonstrate that by preserving the phase response behavior of a single oscillator, we preserve timing behavior at the multioscillator level.
منابع مشابه
Rhythms in Energy Storage Control the Ability of the Cyanobacterial Circadian Clock to Reset
Circadian clocks are oscillatory systems that schedule daily rhythms of organismal behavior. The ability of the clock to reset its phase in response to external signals is critical for proper synchronization with the environment. In the model clock from cyanobacteria, the KaiABC proteins that comprise the core oscillator are directly sensitive to metabolites. Reduced ATP/ADP ratio and oxidized ...
متن کاملThe circadian oscillator gene GIGANTEA mediates a long-term response of the Arabidopsis thaliana circadian clock to sucrose.
Circadian clocks are 24-h timing devices that phase cellular responses; coordinate growth, physiology, and metabolism; and anticipate the day-night cycle. Here we report sensitivity of the Arabidopsis thaliana circadian oscillator to sucrose, providing evidence that plant metabolism can regulate circadian function. We found that the Arabidopsis circadian system is particularly sensitive to sucr...
متن کاملGates and oscillators II: zeitgebers and the network model of the brain clock.
Circadian rhythms in physiology and behavior are regulated by the SCN. When assessed by expression of clock genes, at least 2 distinct functional cell types are discernible within the SCN: nonrhythmic, light-inducible, retinorecipient cells and rhythmic autonomous oscillator cells that are not directly retinorecipient. To predict the responses of the circadian system, the authors have proposed ...
متن کاملLight Evokes Rapid Circadian Network Oscillator Desynchrony Followed by Gradual Phase Retuning of Synchrony
Circadian neural circuits generate near 24-hr physiological rhythms that can be entrained by light to coordinate animal physiology with daily solar cycles. To examine how a circadian circuit reorganizes its activity in response to light, we imaged period (per) clock gene cycling for up to 6 days at single-neuron resolution in whole-brain explant cultures prepared from per-luciferase transgenic ...
متن کاملEffects of Circadian Rhythm on Physical and physiological Performance of Military forces- Narrative Review
The 2017 Nobel Prize for medicine was awarded the biological clock Scientist, which shows the importance of this phenomenon in the life of living organisms. The circadian Rhythm (CR) through the created internal “clock” is responsible for regulating the daily performance of different organs of the body. The central body clock is the key factor to creating and maintaining this CR. External optic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 95 4 شماره
صفحات -
تاریخ انتشار 2008